swh.storage.cassandra.model module
Classes representing tables in the Cassandra database.
They are very close to classes found in swh.model.model, but most of
them are subtly different:
Large objects are split into other classes (eg. RevisionRow has no
‘parents’ field, because parents are stored in a different table,
represented by RevisionParentRow)
They have a “cols” field, which returns the list of column names
of the table
They only use types that map directly to Cassandra’s schema (ie. no enums)
Therefore, this model doesn’t reuse swh.model.model, except for types
that can be mapped to UDTs (Person and TimestampWithTimezone).
Fields may have dataclasses metadata
keys fk
if the existence of a corresponding row in a different table is almost guaranteed
(up to loaders not crashing and eventual-consistency settling down) and
points_to
if they are a Merkle-DAG link to another object (which is more likely
to be missing).
This is used by swh.storage.cassandra.diagram.dot_diagram()
.
-
swh.storage.cassandra.model.MAGIC_NULL_PK = b'<null>'
NULLs (or all-empty blobs) are not allowed in primary keys; instead we use a
special value that can’t possibly be a valid hash.
-
swh.storage.cassandra.model.content_index_table_name(algo: str, skipped_content: bool) → str[source]
Given an algorithm name, returns the name of one of the ‘content_by_*’
and ‘skipped_content_by_*’ tables that serve as index for the ‘content’
and ‘skipped_content’ tables based on this algorithm’s hashes.
For now it is a simple substitution, but future versions may append a version
number to it, if needed for schema updates.
-
class swh.storage.cassandra.model.BaseRow[source]
Bases: object
-
TABLE: ClassVar[str]
-
PARTITION_KEY: ClassVar[Tuple[str, ...]]
-
CLUSTERING_KEY: ClassVar[Tuple[str, ...]] = ()
-
classmethod denullify_clustering_key(ck: Tuple) → Tuple[source]
If this class has a Optional fields used as a clustering key, this replaces
such values from the given clustering key so it is suitable for sorting purposes
-
classmethod from_dict(d: Dict[str, Any]) → T[source]
-
classmethod cols() → List[str][source]
-
to_dict() → Dict[str, Any][source]
-
class swh.storage.cassandra.model.ContentRow(sha1: bytes, sha1_git: bytes, sha256: bytes, blake2s256: bytes, length: int, ctime: datetime.datetime | None, status: str)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'content'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('sha256',)
-
CLUSTERING_KEY: ClassVar[Tuple[str, ...]] = ('sha1', 'sha1_git', 'blake2s256')
-
sha1: bytes
-
sha1_git: bytes
-
sha256: bytes
-
blake2s256: bytes
-
length: int
-
ctime: datetime | None
creation time, i.e. time of (first) injection into the storage
-
status: str
-
class swh.storage.cassandra.model.SkippedContentRow(sha1: bytes | None, sha1_git: bytes | None, sha256: bytes | None, blake2s256: bytes | None, length: int | None, ctime: datetime.datetime | None, status: str, reason: str, origin: str)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'skipped_content'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('sha1', 'sha1_git', 'sha256', 'blake2s256')
-
sha1: bytes | None
-
sha1_git: bytes | None
-
sha256: bytes | None
-
blake2s256: bytes | None
-
length: int | None
-
ctime: datetime | None
creation time, i.e. time of (first) injection into the storage
-
status: str
-
reason: str
-
origin: str
-
classmethod denullify_clustering_key(ck: Tuple) → Tuple[source]
If this class has a Optional fields used as a clustering key, this replaces
such values from the given clustering key so it is suitable for sorting purposes
-
classmethod from_dict(d: Dict[str, Any]) → SkippedContentRow[source]
-
class swh.storage.cassandra.model.DirectoryRow(id: bytes, raw_manifest: bytes | None)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'directory'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('id',)
-
id: bytes
-
raw_manifest: bytes | None
NULL if the object can be rebuild from (sorted) entries
-
class swh.storage.cassandra.model.DirectoryEntryRow(directory_id: bytes, name: bytes, target: bytes, perms: int, type: str)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'directory_entry'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('directory_id',)
-
CLUSTERING_KEY: ClassVar[Tuple[str, ...]] = ('name',)
-
directory_id: bytes
-
name: bytes
path name, relative to containing dir
-
target: bytes
-
perms: int
unix-like permissions
-
type: str
target type
-
class swh.storage.cassandra.model.RevisionRow(id: bytes, date: swh.model.model.TimestampWithTimezone | None, committer_date: swh.model.model.TimestampWithTimezone | None, type: str, directory: bytes, message: bytes, author: swh.model.model.Person, committer: swh.model.model.Person, synthetic: bool, metadata: str, extra_headers: dict, raw_manifest: bytes | None)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'revision'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('id',)
-
id: bytes
-
date: TimestampWithTimezone | None
-
committer_date: TimestampWithTimezone | None
-
type: str
-
directory: bytes
source code “root” directory
-
message: bytes
-
author: Person
-
committer: Person
-
synthetic: bool
true iff revision has been created by Software Heritage
-
metadata: str
extra metadata as JSON(tarball checksums, etc…)
-
extra_headers: dict
extra commit information as (tuple(key, value), …)
-
raw_manifest: bytes | None
NULL if the object can be rebuild from other cells and revision_parent.
-
class swh.storage.cassandra.model.RevisionParentRow(id: bytes, parent_rank: int, parent_id: bytes)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'revision_parent'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('id',)
-
CLUSTERING_KEY: ClassVar[Tuple[str, ...]] = ('parent_rank',)
-
id: bytes
-
parent_rank: int
parent position in merge commits, 0-based
-
parent_id: bytes
-
class swh.storage.cassandra.model.ReleaseRow(id: bytes, target_type: str, target: bytes, date: swh.model.model.TimestampWithTimezone, name: bytes, message: bytes, author: swh.model.model.Person, synthetic: bool, raw_manifest: bytes | None)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'release'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('id',)
-
id: bytes
-
target_type: str
-
target: bytes
-
date: TimestampWithTimezone
-
name: bytes
-
message: bytes
-
author: Person
-
synthetic: bool
true iff release has been created by Software Heritage
-
raw_manifest: bytes | None
NULL if the object can be rebuild from other cells
-
class swh.storage.cassandra.model.SnapshotRow(id: bytes)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'snapshot'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('id',)
-
id: bytes
-
class swh.storage.cassandra.model.SnapshotBranchRow(snapshot_id: bytes, name: bytes, target_type: str | None, target: bytes | None)[source]
Bases: BaseRow
For a given snapshot_id, branches are sorted by their name,
allowing easy pagination.
-
TABLE: ClassVar[str] = 'snapshot_branch'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('snapshot_id',)
-
CLUSTERING_KEY: ClassVar[Tuple[str, ...]] = ('name',)
-
snapshot_id: bytes
-
name: bytes
-
target_type: str | None
-
target: bytes | None
-
class swh.storage.cassandra.model.OriginVisitRow(origin: str, visit: int, date: datetime.datetime, type: str)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'origin_visit'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('origin',)
-
CLUSTERING_KEY: ClassVar[Tuple[str, ...]] = ('visit',)
-
origin: str
-
visit: int
-
date: datetime
-
type: str
-
class swh.storage.cassandra.model.OriginVisitStatusRow(origin: str, visit: int, date: datetime.datetime, type: str, status: str, metadata: str, snapshot: bytes)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'origin_visit_status'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('origin',)
-
CLUSTERING_KEY: ClassVar[Tuple[str, ...]] = ('visit', 'date')
-
origin: str
-
visit: int
-
date: datetime
-
type: str
-
status: str
-
metadata: str
-
snapshot: bytes
-
classmethod from_dict(d: Dict[str, Any]) → T[source]
-
class swh.storage.cassandra.model.OriginRow(sha1: bytes, url: str, next_visit_id: int)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'origin'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('sha1',)
-
sha1: bytes
-
url: str
-
next_visit_id: int
We need integer visit ids for compatibility with the pgsql
storage, so we’re using lightweight transactions with this trick:
https://stackoverflow.com/a/29391877/539465
-
class swh.storage.cassandra.model.MetadataAuthorityRow(url: str, type: str)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'metadata_authority'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('url',)
-
CLUSTERING_KEY: ClassVar[Tuple[str, ...]] = ('type',)
-
url: str
-
type: str
-
class swh.storage.cassandra.model.MetadataFetcherRow(name: str, version: str)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'metadata_fetcher'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('name',)
-
CLUSTERING_KEY: ClassVar[Tuple[str, ...]] = ('version',)
-
name: str
-
version: str
-
class swh.storage.cassandra.model.RawExtrinsicMetadataRow(id: bytes, type: str, target: str, authority_type: str, authority_url: str, discovery_date: datetime, fetcher_name: str, fetcher_version: str, format: str, metadata: bytes, origin: str | None, visit: int | None, snapshot: str | None, release: str | None, revision: str | None, path: bytes | None, directory: str | None)[source]
Bases: BaseRow
An explanation is in order for the primary key:
Intuitively, the primary key should only be ‘id’, because two metadata
entries are the same iff the id is the same; and ‘id’ is used for
deduplication.
However, we also want to query by
(target, authority_type, authority_url, discovery_date)
The naive solution to this would be an extra table, to use as index;
but it means 1. extra code to keep them in sync 2. overhead when writing
3. overhead + random reads (instead of linear) when reading.
Therefore, we use a single table for both, by adding the column
we want to query with before the id.
It solves both a) the query/order issues and b) the uniqueness issue because:
adding the id at the end of the primary key does not change the rows’ order:
for two different rows, id1 != id2, so
(target1, …, date1) < (target2, …, date2)
<=> (target1, …, date1, id1) < (target2, …, date2, id2)
the id is a hash of all the columns, so:
rows are the same
<=> id1 == id2
<=> (target1, …, date1, id1) == (target2, …, date2, id2)
-
TABLE: ClassVar[str] = 'raw_extrinsic_metadata'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('target',)
-
CLUSTERING_KEY: ClassVar[Tuple[str, ...]] = ('authority_type', 'authority_url', 'discovery_date', 'id')
-
id: bytes
-
type: str
-
target: str
-
authority_type: str
-
authority_url: str
-
discovery_date: datetime
-
fetcher_name: str
-
fetcher_version: str
-
format: str
-
metadata: bytes
-
origin: str | None
-
visit: int | None
-
snapshot: str | None
-
release: str | None
-
revision: str | None
-
path: bytes | None
-
directory: str | None
-
class swh.storage.cassandra.model.RawExtrinsicMetadataByIdRow(id: bytes, target: str, authority_type: str, authority_url: str)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'raw_extrinsic_metadata_by_id'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('id',)
-
CLUSTERING_KEY: ClassVar[Tuple[str, ...]] = ()
-
id: bytes
-
target: str
-
authority_type: str
-
authority_url: str
-
class swh.storage.cassandra.model.ObjectCountRow(partition_key: int, object_type: str, count: int)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'object_count'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('partition_key',)
-
CLUSTERING_KEY: ClassVar[Tuple[str, ...]] = ('object_type',)
-
partition_key: int
-
object_type: str
-
count: int
-
class swh.storage.cassandra.model.ExtIDRow(extid_type: str, extid: bytes, extid_version: int, target_type: str, target: bytes)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'extid'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('extid_type', 'extid')
-
CLUSTERING_KEY: ClassVar[Tuple[str, ...]] = ('extid_version', 'target_type', 'target')
-
extid_type: str
-
extid: bytes
-
extid_version: int
-
target_type: str
-
target: bytes
-
class swh.storage.cassandra.model.ExtIDByTargetRow(target_type: str, target: bytes, target_token: int)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'extid_by_target'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('target_type', 'target')
-
CLUSTERING_KEY: ClassVar[Tuple[str, ...]] = ('target_token',)
-
target_type: str
-
target: bytes
-
target_token: int
value of token(pk) on the “primary” table
-
class swh.storage.cassandra.model.ObjectReferenceRow(target_type: str, target: bytes, source_type: str, source: bytes)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'object_references'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('target_type', 'target')
-
CLUSTERING_KEY: ClassVar[Tuple[str, ...]] = ('source_type', 'source')
-
target_type: str
-
target: bytes
-
source_type: str
-
source: bytes
-
class swh.storage.cassandra.model.ObjectReferencesTableRow(pk: int, name: str, year: int, week: int, start: cassandra.util.Date, end: cassandra.util.Date)[source]
Bases: BaseRow
-
TABLE: ClassVar[str] = 'object_references_table'
-
PARTITION_KEY: ClassVar[Tuple[str, ...]] = ('pk',)
-
CLUSTERING_KEY: ClassVar[Tuple[str, ...]] = ('name',)
-
pk: int
always zero, puts everything in the same Cassandra partition for faster querying
-
name: str
-
year: int
ISO year.
-
week: int
ISO week.
-
start: Date
-
end: Date